How to apply cognitive abilities in industrial automation and logistics

Dr. Michael Suppa, CEO Roboception GmbH
March 23rd, 2016
Transfer of Cognitive Robotics Research to Industrial Applications
ERF 2016
Market

Low-cost and collaborative robots are the future

„Strong growth in professional service: break-through expected within the next 7 years

• Robotic systems must be low-cost and need to collaborate with the human
• Transparent and secure data exchange and distributed systems
• Robots must handle process and sensor data and prepare/support decision-making
• Classical industrial vision systems need controlled environment conditions, are not able to fulfill the challenges in partially-structured environments

“Easy-to-use systems” are required
3D Perception Testimonial

“3D vision is a disruptive technology that enables robots to operate in a partially-structured environment”.
- IFR Annual Report on Service Robotics

“Perception was the dominating factor separating the winners from the rest of the field in the amazon picking challenge”.
- Henrik Christensen

"If we were only able to provide the visual capabilities of a 2-year old child, robots would quickly get a lot better."
- Rodney Brooks

Sources:
Market demands precise, low-cost robots

3D Vision reduces robot costs

- Many applications require high precision

- High **absolute** accuracy is limited and leads to high robot cost

- Manipulation and grasping require precision **relative** to the work piece

- Robot base and object location remain flexible (no classical teach-in possible or necessary)

„New paradigm change in programming robots“
Cost Reduction and Increased Performance

Holistic development of manipulation and perception

- Traditional application approach: Engineering of individual solutions at high cost

Flexibility and versatility reduces cost

- Some production steps require two arms
- Force sensing and 3D vision are required
- Gripper technology is a cost factor

„Holistic analysis and design of perception and manipulation reduce cost by common building blocks“
Pipeline Including Manipulation and Grasping

Visual Perception
- Scene registration:
 - Pointcloud
 - B&W / RGB images
- Scene interpretation:
 - Localization wrt. environment
 - Plane detection (tabletop scenarios)
 - Clustering
 - Object recognition/approximation
 - 3D / 6D object pose estimation (application dependent)

Contextual information
- Object model database:
 - CAD model (mesh / object coordinate frame)
 - Semantic annotations (action / restriction areas)
 - Mass / inertial properties
 - Grasp database (gripper dependent)
- Task information:
 - Grasp planning:
 - Known objects: grasp database
 - Familiar objects: grasp adaptation
 - Unknown objects: online grasp planning for the approx. geometry
 - Grasp sorting:
 - Reachability
 - Feasibility for start / goal configuration
 - Grasp quality
 - Task information:
 - Grip specification
 - Required hand / power tools
 - Goal pose / intended use
 - IK / Reachability map of the manipulator
- Supervisory system:
 - Error detection
 - Planning of corrective actions
- Grasp / Motion planning
- Feedback:
 - Visual (Object / Hand tracking)
 - Tactile (gripper)
- Motion planning:
 - Reachability
 - Collision-free path
- Grasp/Manipulation execution:
 - Arm / gripper control

Closure of the action/perception loop
Key Questions

Domain: Industrial Automation and Logistics

• Cognitive technologies introduced into industrial applications?
 • Use of object databases containing geometric information (small data)
 • CNNs for segmentation of data
 • Use of process information for task description

• Major Gaps so far:
 • Programming of tasks (perception/grasping/manipulation) require expert knowledge
 • Robustness and cross-context application is very limited
 • Many “engineered solutions”
Key Questions

Domain: Industrial Automation and Logistics

• Expected cognitive technologies in the next three years?
 • Semantic annotation of objects
 • Novel programming paradigm using relative information and task abstraction
 • Supervisory systems
Thank you.

Visit us on: www.roboception.de
Kaflerstr. 2, 81241 Munich
Hannovermesse 2016//HGF Young Tech Enterprises, Hall 3
Automatica 2016//Hall B4

Dr. Michael Suppa
CEO