
Project Acronym: Xperience
Project Type: IP
Project Title: Robots Bootstrapped through Learning from Experience
Contract Number: 270273
Starting Date: 01-01-2011
Ending Date: 31-12-2015

XXPERIENCEPERIENCE..ORGORG

Deliverable Number: D5.2.4
Deliverable Title: Demonstration on Scenario 1: Execution of a recipe.
Type (Internal, Restricted, Public): PU
Authors: Alejandro Agostini, Mohamad Javad Aein, Markus Schoeler,

Eren Aksoy, Sandor Szedmak, Emre Ugur, Wail Mustafa,
Mikkel Tang Thomsen, Dirk Kraft, Norbert Krüger, Justus Pi-
ater, Florentin Wörgötter

Contributing Partners: ALL

Contractual Date of Delivery to the EC: 31-01-2015
Actual Date of Delivery to the EC: 06-05-2015

Contents

1 Executive Summary 3

1.1 Objects in Scene: Object Recognition Mechanisms . 3

1.2 Repository of Objects and Attributes with Roles (ROAR) 4

1.2.1 Intelligent database . 5

1.2.2 Affordance Extraction Based on Vision . 5

1.3 Object Replacement and Plan Updating . 6

1.4 Salad Making Scenario: Planning Domain Definition and ROAR tables 6

1.5 Plan Execution . 7

1.5.1 Task Specific Grasping of Unknown Objects . 9

1.6 Demonstrated Cases . 10

1.6.1 Case 1: No Missing Objects . 11

1.6.2 Case 2: Cucumber Missing, Replace it with Banana. 11

1.6.3 Case 3: Bowl Missing, Replace it with Unknown Object. 12

2 Conclusions 14

2

Chapter 1

Executive Summary

This deliverable describes the demonstration in scenario 1: preparation of a recipe. The demonstration
consists of a robot preparing a salad, where objects in the original recipe might be missing and the
robot should be able to figure out which other objects in the scenario can be used to replace the missing
ones. In the demonstration we show the integration of perceptual, object, and action categories for the
salad making scenario with planning mechanisms to perform plans with a large set of grounded object-
action complexes on which generalization processes are performed by structural bootstrapping. The
demonstration realizes the main objectives of work package WP5.2.

Fig. 1.1 shows a general diagram with the processes taking place in the demonstration. First, a plan is
generated from the original recipe. This original recipe is described as a prototypical planning domain
definition that would allow a planner to generate the sequence of instructions (plan) to prepare the salad.
Once the plan is generated, the robot checks if all the required objects are in the scenario. If there are
missing objects, the robot connects to the Repository of Objects and Attributes with Roles (ROAR) to
find out which of the objects perceived in the scene have the same affordances of the missing ones. If
replacements are found, the plan is updated and executed using the replacements.

Figure 1.1: General diagram of the processes implemented in the salad making scenario.

The following sections describe the main aspects of the processes involved in the deliverable. Further
details can be found in the attached paper [AAS+15] and Deliverable D3.1.3.

1.1 Objects in Scene: Object Recognition Mechanisms

For object recognition in the salad making scenario we use the detection and extraction pipeline proposed
by Schoeler et al. [9], which is a fast and automatic system capable to extract and learn unknown objects
with minimal human intervention. For this it employs a two-level pipeline combining the advantages of

3

Xperience 270273 PU

RGB-D sensors for object detection (see Figure 1.2) and high-resolution cameras for object classification.
It projects proposals generated on the low-resolution range image to the higher resolution camera frame.
Furthermore, a Radial keypoint orientation scheme is employed, which orients local descriptors (in this
case SIFT and CyColor) pointing away from the object’s center. Compared to the fixed orientation
scheme (often used in scene classification) it is rotation invariant. Compared to the dominant local
gradient orientation (e.g. SIFT-Detector, SURF-Detector) it is shape discriminative due to important
shape information being encoded in the dominant image gradients on objects. Together with a spatial
bag-of-words encoding this leads to highly invariant but discriminative object signatures, which are used
for a support-vector-machine with a histogram intersection kernel.

Figure 1.2: Object detection and recognition pipeline trained on objects from the salad making scenario.
Left: RGB high-resolution image; Middle: Extracted objects in 3D. The camera view direction is shown
by the blue axis; Right: Classification on detected objects.

1.2 Repository of Objects and Attributes with Roles (ROAR)

This section presents a brief description of the repository of objects and attributes with roles (ROAR),
coding object affordances used for finding replacements. For more details please refer to the attached
paper [AAS+15] and Deliverable D3.1.3.

The learning infrastructure of object-action relation and the replacement of the objects or actions with
a suitable one is built around the ROAR module. That module behaves as a certain type of object
memory where the set of available or potentially available objects together with the affordances related
attributes are stored. The ROAR stands for repository of objects&attributes with roles. The database of
prior knowledge can be created by hand or by prior experience. It allows objects to be retrieved by their
attributes, and the attributes of novel objects can be inferred.

The ROAR module serves as an active database system, which not only stores and returns the data
items, but via machine learning tools it extends the database with predicted elements, and can provide
data not observed earlier by the users connected to the database. This type of active database might
also be called as “Intelligent Relational Database”. The learning methods working in the background of
the ROAR are introduced by [13] and [11]. The first one is built around the Homogeneity Analysis, a
Singular Vector Decomposition based method, the second one is a large scale maximum margin based
learner. Both are designed to predict missing relations from the available data sources.

ROAR can learn from various data sources and can make reasoning in different ways. While ROAR
has the potential of representing any type of relations, it also supports learning from and reasoning on
(object, action, score) tuples. Figure 1.3 shows the structure of the ROAR how this intelligent database is
connected to different data sources, e.g. from world wide web resources connected as remote clients, and
how the reasoning capability of ROAR can be exploited by different modules. First of all, the relations
represented in ROAR can be automatically bootstrapped by common sense knowledge extracted from
text (action, object, score) tuples. Alternatively, ROAR can learn object-action relations directly from
the domain descriptions used by the planners. Note that, ROAR not only stores those relations, but has
the ability to infer the scores of the missing ones. In the current scenarios, reasoning capability of ROAR
is used when the plan execution fails due to missing target objects, and the plan execution monitoring
module searches for alternative objects that can replace the target object. The ROAR can represent
categorical and continuous data as well, and have the potential capability to make inferences based on
features obtained from perception.

4

Xperience 270273 PU

General database structure

Predicted data
Provided by the learner

Observed data
Provided by

the external clients
Remote client

Write
And
Read

Only read

Learner

Only read

Write
And
Read

Object-
object

relations

Action-
Object

relations

Object
features

Training module

Parameter validation

Running on
available DB

Off-line

Validated
parameters

Test module

Relies on validated
Parameters

On-line

Data tables

Learner

Only read

Read and update

ROAR updates the information accumulated
in the database. It works in the background
and filling up the unknown data fields, and
those ones in which the confidence is low.

The resource intensive training process of the
learners can run off-line in the background,
and the test module executes the necessary up-
dates on-line.

Figure 1.3: General structure of the ROAR

1.2.1 Intelligent database

The basic concept of combining database techniques with artificial intelligence to improve the perfor-
mance of a robot has been discussed since the dawn of computers. A reasonable summary of ideas an
a comprehensive definition of the intelligent database are published in the book [6]. One of the most
recent collection of papers dealing with the possible building blocks can be found in [10]. An integrated
general system, Robobrain, similar to the ROAR is published by the authors of [8]. Since the ROAR
system is built around a broadly used professional open source database system (Postgresql) the required
software engineering implementing the connections, the concurrence of the data retrieval and updates
could be reduced to minimum. This kind of universal approach can connect working robots world wide
and allows us to build an intelligent community via propagation of the locally collected knowledge with
only moderate efforts.

1.2.2 Affordance Extraction Based on Vision

Assigning affordances to novel objects has been done using an object categorisation method that utilises
a multi-label learning algorithm, namely Joint SVM [14], provided by ROAR. Using this method, objects
are described using global 3D features. The features consist of histograms of pairwise geometric measures,
namely angle and scale-invariant distance, computed between local features (3D texlets). The way objects
described using these features was discussed in more detail in D2.3.3 and [5]. The use of Joint SVM as a
multi-label learning algorithm was introduced in the attached technical report [MXK+15].

In this demo, the method was used to assign affordances to missing (novel) objects and store the af-
fordances in ROAR. To demonstrate the performance of this method in the salad making scenario, we
tested the method on every object involved in the scenario (e.g. those shown in Sec. 1.1) as well as
some new objects. For each object, the object in question is considered missing whereas the method is
trained with the rest of the objects. In the training phase, the method is presented with 20 samples for
each object. In the prediction phase, the method assigns affordances to the individual object in question
(which was not included in the training phase). Note that the objects are labeled with human-defined
affordances relevant to this scenario. The labels are composed of two parts describing accordances in
ROAR: action and preposition. For each affordance, the two parts are concatenated into a single label
such as “[action] [preposition]”1.

Table 1.4 shows the outcome of the prediction phase on the objects involved in this demo. The ratios
represent the number of test samples (out of 20 samples for each object) to which the specific affordance
was assigned. The grey shadows indicate how each object was labeled. For the object ’zucchini’ for
instance, the method assigned the affordances “cut null”, “drop null”, “pick null”, “pick place null”, and
“place null” to 19 test samples. These are correct affordances according to how this object is labeled (the
grey shadows). The system was able to make these prediction because of the zucchini’s visual similarity
to ‘banana’, which was included in this case in the training phase and from which these affordances
were learned. Moreover, the method assigned the affordance “pour from” for one sample, which is an

1A “null” preposition means that the action is performed on the object.

5

Xperience 270273 PU

incorrect prediction. The object ‘board’ is labeled with “pick place to” and “place to” affordances but
the affordances were never predicted for the ‘board’ object. This is because the method has never learned
such affordances before (i.e,. in the training phase in this case no object had these affordances). To use the
extracted affordances presented in Table 1.4 in the demo, we created a Table called object action vision
(see Table 1.2) in the ROAR database.

objects pick_place_to place_to cut_null drop_null pick_null pick_place_null place_null pour_from pour_into stir_null drop_into cut_with stir_with

banana 0 0 0.55 0.55 0.55 0.55 0.55 0.1 0 0 0 0.45 0.45

board 0 0 0 0 0 0 0 0 0 0 0 1 1

bottle 0 0 1 1 1 1 1 0 0 0 0 0 0

bowl 0 0 0.05 0.05 0.05 0.05 0.05 0 0.95 0.95 0.95 0 0

unknown_bowl_blue 0 0 0 0 0 0 0 0 0.8 0.8 0.8 0 0

cleaver 0 0 0 0 0 0 0 0 0.35 0.35 0.35 0.15 0.5

zucchini 0 0 0.95 0.95 0.95 0.95 0.95 0.05 0 0 0 0 0

jar 0 0 1 1 1 1 1 0 0 0 0 0 0

unknown_knife_orange 0 0 0 0 0 0 0 0 0 0 0 0.8 1

unknown_knife_purple 0 0 0 0 0 0 0 0 0 0 0 1 1

spoon 0 0 0 0 0 0 0 0 0 0 0 1 1

unknown_spoon_orange 0 0 0 0 0 0 0 0 0 0 0 0.9 1

Figure 1.4: The prediction of affordances when the individual object is novel whereas the rest are known.

1.3 Object Replacement and Plan Updating

The object replacement and plan updating mechanisms are triggered in case any of the objects involved
in the plan generated from the prototypical planning domain is missing (see Fig. 1.1). In this case,
the system extracts from the planning operators (POs) involved in the generated plan all the predicates
coding the missing object affordances. Then, the system checks, for each of the missing objects, which
object in the current scenario has the same affordances as the missing one. This is done by extracting
the affordances of the evaluated object from the ROAR tables (see Tables 1.1 and 1.2) and then checking
if these affordances match those of the missing object. If an object in the scenario has all the same
affordances, then it is used to replace the missing one. If replacements for all the missing objects are
found, then the plan is updated with the replacements. For a more detailed description of this process,
please refer to the attached paper [AAS+15].

1.4 Salad Making Scenario: Planning Domain Definition and
ROAR tables

In the salad making scenario, the task consists of preparing a cucumber salad by first cutting the cucumber
in pieces on a cutting board, dropping these pieces into a bowl, pouring salad dressing into the bowl, and
then stirring everything with a spoon.

The prototypical planning domain definition for this scenario involves the following objects:

• Robot hand,
• table,
• board (cutting board),
• cucumber,
• knife,
• bottle (containing the salad dressing),
• bowl,
• spoon.

In the planning domain definition we consider the name for the predicates associated to affordances in
the ROAR tables, e.g. cutObj(cucumber) indicating that the cucumber is an object that can be cut. In
addition to the predicates coding affordances, the domain definition also comprises predicates describing
the relations between objects, e.g. cucumber on the board: on(cucumber, board), and the object status,
e.g. cucumber not cut: !cut(cucumber).

6

Xperience 270273 PU

Some of the predicates considered in the initial state of the planning problem definition for the salad mak-
ing scenario are: on(cucumber, table), !on(cucumber, board), free(hand), PPto(board), !cut(cucumber),
cutWith(knife), !in(cucumber, bowl), !stirred(bowl), stirWith(spoon), and pourObj(dressing). The
predicates for the goal specification for the task of preparing a cucumber salad are: cut(cucumber)),
in(dressing, bowl)), in(cucumber, bowl)), and stirred(bowl)), indicating that the cucumber should be
cut, the dressing and the cucumber should be in the bowl, and the bowl should be stirred, respectively.

For plan generation we use the logic-based planner PKS [7]. The PKS description of the planning
operators defined for the salad making scenario are presented in Fig. 1.5.

Figure 1.5: Planning operators in PKS notation defined for the salad making scenario. The predicates
coding affordances compatible with the ROAR are marked in red.

We created a SQL database for the salad making scenario using the interface software Postgresql. The
name of the database is salad–scenario, and the main table used to find object replacement is called
object–action, which was created manually. Table 1.1 presents some elements of this table. On the other
hand, Table object-action-vision (see Table 1.2) presents some of the affordances extracted from visual
features, as explained in Sec. 1.2.2. This table is used in case the system is not able to find a replacement
using the manually coded table object-action.

The fields of the tables are the object name, the action in which it is involved, the preposition, indicating
the specific function of the object in that action, and the score, indicating how probable is that the object
can be used for the corresponding action. In addition, the table contains a field with the name of the
predicate that will be used to code the corresponding affordance in the planning domain definition.

1.5 Plan Execution

In the execution phase of the planning framework, we created a library of actions that encodes the
abstract semantic structure of manipulations. The derived structure allows robots to execute various
chains of human-like manipulation actions, such as the ones involved in preparing a salad.

In the action library, actions are represented in the semantic level by employing the concept of Semantic
Event Chains (SECs) introduced in [2]. SECs capture the essence of an action by employing computer
vision techniques. Given a human demonstrated action, SECs segment and track all objects exist in
the scene and encodes the entire action as a matrix in the spatiotemporal domain. Each column in the
SEC matrix represents a decisive temporal anchor point in the manipulation, i.e. indicates a unique and
descriptive scene “state”. All rows in the SEC are the abstract spatial relations between object pairs.
Fig. 1.6 pictures the extracted SEC matrix from a robot execution of a pick place manipulation. Since
each state in the SEC corresponds to a topological change in the manipulation, we consider each transition
from one SEC column to the next as a movement primitive, such as approach or grasp. In Fig.1.6, the
necessary primitives associated with each column of the SEC matrix are shown for the pick place example.

7

Xperience 270273 PU

Table 1.1: Object-Action Table. Salad-Scenario Database.
Object Action Preposition Predicate Score
cucumber cut null cutObj 1
carrot cut null cutObj 1
banana cut null cutObj 1
knife cut with cutWith 1
cleaver cut with cutWith 1
cucumber drop null dropObj 1
carrot drop null dropObj 1
banana drop null dropObj 1
board drop from dropFrom 1
cucumber pick place null PPObj 1
carrot pick place null PPObj 1
banana pick place null PPObj 1
table pick place from PPFrom 1
board pick place to PPto 1
spoon stir with stirWith 1
knife stir with stirWith 1
bowl stir null stirObj 1
bowl pour into pourInto 1
bowl drop into dropInto 1

Table 1.2: Object-Action-Vision Table. Salad-Scenario Database.
Object Action Preposition Predicate Score
zucchini cut null cutObj 0.95
banana cut null cutObj 0.55
unknown knife orange cut with cutWith 0.8
unknown knife purple cut with cutWith 1
zucchini drop null dropObj 0.95
banana drop null dropObj 0.55
zucchini pick place null PPObj 0.95
banana pick place null PPObj 0.55
spoon stir with stirWith 1
spoon cut with stirWith 1
unknown spoon orange stir with stirWith 1
unknown spoon orange cut with stirWith 0.9
bowl stir null stirObj 0.95
bowl pour into pourInto 0.95
bowl drop into dropInto 0.95
unknown bowl blue stir null stirObj 0.8
unknown bowl blue pour into pourInto 0.8
unknown bowl blue drop into dropInto 0.8

Note that these primitives are symbolic, but, on the other hand, are fully grounded at the signal level
with uniquely tracked image segments. In [3] we also show that those symbolic action primitives are
learned from human demonstrations in an unsupervised manner.

During the learning from human demonstrations, we also enrich the raw symbolic SEC primitives with
additional object and trajectory information. Each image segment is classified as manipulator, primary
and secondary objects by considering their exhibited roles in the action as described in [3]. Manipulator
is the main actor that performs the planned goal in the action, e.g. hand. Primary object, e.g. knife, is
the one that is directly manipulated by the manipulator. All other objects interacting with the primary
object, are called secondary objects, e.g. cucumber to be cut. We next identify the classified image
segments by employing the object recognition method in [9]. We additionally capture the trajectory
pattern of the detected manipulator, e.g. human hand, with the modified Dynamic Movement Primitives
(DMPs, [4]) and attach it to the respective primitive in the SEC. Fig. 1.6 shows detected and recognized

8

Xperience 270273 PU

Figure 1.6: Robot execution of a pick place manipulation. The snapshots of the performed action
together with segmented images are shown on the top. The symbolic graph sequence is given in the
middle. Each graph corresponds to one column in the SEC matrix given in the middle together with
the corresponding action primitives. The valid symbolic entries in the SEC matrix are the spatial object
relations, i.e. N (Not touching) and T (Touching). In the bottom, recognized objects in the SEC and the
attached segmented trajectory profile for the robot manipulator are given.

primary and secondary objects in the current scene. The trajectory profile depicted in Fig. 1.6 is the
estimated manipulator movement from a sample human demonstration. We now segment the whole
trajectory at the anchor points in the SEC and feed back to the robot for the sequential execution of
each primitive, e.g. the Put primitive is shown in gray box.

Once the SEC representation is augmented with action descriptive object and trajectory parameters, we
employ the Finite State Machine (FSM) introduced in [1]. The FSM creates one state for each column
of SEC matrix and allows the robot to transit from one primitive the next by applying the embedded
trajectory pattern to the primary object in the plan. The input of FSM is the relation of objects and
its output are the primitives. To detect the spatial relations in the current scene, the robot uses the
combination of proprioceptive (e.g. position) and exteroceptive (e.g. tactile, force, and vision) sensors
and sends an error signal if the desired primitive, i.e. expected effect in the spatial relations, is not
observed.

1.5.1 Task Specific Grasping of Unknown Objects

For transfer of actions between objects we investigated the space of visual triggered action affordances
in terms of a combined feature-action space (as described in D2.3.3 and [12]). We spatially combine
visual features with actions, both from a simulated environment in terms of simulated visual sensors
and simulated grasps. We vary important dimensions in the visual space such as the granularity (size)
of the surface patches, the order (one or two combined features) and the feature abstraction (a surface
patch, a surface patch with a border label and a surface patch with border label and direction to the
border). In our search for promising regions (visual triggered affordances) in the space, we perform a
neighbourhood analysis and extract the success-probability and the amount of support of the different
feature-action particles and save the results in a database. This database enables grasp predictions on
previously unseen objects.

Based on the method, we investigated the visual action space as described above and show how the ability
to make grasp predictions is strongly depending on the visual descriptor used. In particular it is seen
how the addition of a border label and direction improve the performance significantly for specific object
categories such as bowls, cups and knives, essentially extracting parts of the structure properties that
these objects possess.

In D2.3.3 and [12] we focused our work on general grasping of unknown objects. For the integration into

9

Xperience 270273 PU

the Salad making scenario we extended this to task specific grasping (e.g., grasping a knife to later on
use it for cutting). This years demonstration is an extension of the standalone grasping demo shown in
year three (D5.2.3). We now integrated the grasping of unknown knives work into the general scenario
on the UGOE platform.

(a) (b) (c)

(d) (e) (f)

Figure 1.7: Exemplified grasp process. (a) Starting scene with the unknown knife to the right, (b) RGB-D
representation of the scene, (c) segmented knife, (d) predicted grasp positions, (e) best predicted grasp,
(f) grasp execution.

We show a standalone video of the grasping for cutting in GraspingForCutting.mp4, see also Fig-
ure 1.7. There we present the visual representation, the predicted grasps and the execution of the best
grasp. In addition, we show our two stage grasp generation process with (a) generation of grasps for known
knives and (b) application of these grasped knives for a cutting task. Based on simulated successes and
failures we create a model relating visual features to action success that is used for the predictions later.

1.6 Demonstrated Cases

The demonstration in scenario 1 comprises three cases (see attached video D5 2 4.m4v). In the first
case, all the objects involved in the plan generated from the prototypical planning problem definition are
present in the scenario. We use this case as the reference case. The second case shows how the system is
able to find a replacement for the main object involved in the preparation of the salad, i.e. the cucumber.
This is evaluated by extracting the cucumber and placing a banana and other objects on the scene. In
this case, it is expected that the system is able to identify the banana as a valid substitution of the
cucumber for the preparation of a salad. The last case demonstrates how the extraction of affordances
based on visual features can be used to find object replacements. To this end, we extract the grey bowl
from the scene, used in several actions of the plan, and place a new bowl having different shape and color,
which is unknown by the system 2.

For all the cases, the original plan, generated from the prototypical planning problem definition is:

pick place(cucumber, hand, table, board)

cut(cucumber, knife, board)

drop(cucumber, hand, board, bowl)

pour(dressing, hand, bottle, bowl)

stir(bowl, spoon)). (1.1)

2An object is assumed to be unknown when it is not considered in the prototypical planning domain definition nor in
the ROAR table generated manually (Table 1.1)

10

Xperience 270273 PU

1.6.1 Case 1: No Missing Objects

In the first case, where no missing objects are in the scene, the original plan (1.1) can be successfully
executed without the need of finding object replacements. Figures 1.8 presents a snapshot of the scenario
for this case. Further details can be found in the attached video.

Figure 1.8: Scenario for the first case of the demo: no missing objects.

1.6.2 Case 2: Cucumber Missing, Replace it with Banana.

The second case of the demo requires finding a replacement for the cucumber, which was not included in
the scenario. The objects in the scene for the second case are (see Fig. 1.9):

• Robot hand,
• table,
• board,
• banana,
• jar,
• knife,
• bottle,
• bowl,
• spoon.

Figure 1.9: Scenario for the second case of the demo: cucumber missing.

The system identifies the missing cucumber and extracts the affordances associated to it from the
POs involved in the original plan 1.1 (see also Fig. 1.5): PPobj(cucumber), cutObj(cucumber), and

11

Xperience 270273 PU

dropObj(cucumber), indicating that the cucumber is an object that can be picked and placed, cut, and
dropped, respectively.

Then, the system evaluates which object in the scene has all the three affordances of the missing cucumber
using Table 1.1. In this case, the banana presents the same affordances and is used to replace the cucumber
in the plan:

pick place(banana, hand, table, board)

cut(banana, knife, board)

drop(banana, hand, board, bowl)

pour(dressing, hand, bottle, bowl)

stir(bowl, spoon)). (1.2)

The updated plan 1.2 was successfully executed by the robot as shown in the video.

1.6.3 Case 3: Bowl Missing, Replace it with Unknown Object.

The last case of the demo shows how the extraction of affordances based on visual features (Sec. 1.2.2)
is used to find a replacement of a missing object. In this case, we extract from the scene the grey round
bowl, which is identified as bowl and known by the system, and place a blue square bowl that is not
included in the planning problem definition, nor in the hand-coded ROAR Table 1.1, i.e. which is not
known by the system (see Fig. 1.10).

In this case, the system identifies the missing bowl and extracts the predicates coding affordances from
the POs involved in the generated plan (see plan 1.1 and Fig. 1.5): dropInto(bowl), pourInto(bowl),
and stirObj(bowl), indicating that the bowl can be used to drop things into, pour things into, and can
be stirred. Then, the system searches for replacements in the hand-coded ROAR Table 1.1. Since no
replacements are found in this table, the system then looks in the table coding affordances extracted from
visual features (Table 1.2). This table actually contains an object having the same three affordances of
the missing bowl: the unknown bowl blue object.

Finally, the system uses the found object unknown bowl blue to replace the bowl in plan 1.1, leading to
plan:

pick place(cucumber, hand, table, board)

cut(cucumber, knife, board)

drop(cucumber, hand, board, unknown bowl blue)

pour(dressing, hand, bottle, unknown bowl blue)

stir(unknown bowl blue, spoon)), (1.3)

The updated plan 1.3 was successfully executed as shown in the video.

12

Xperience 270273 PU

Figure 1.10: Scenario for the third case of the demo: grey bowl missing.

13

Chapter 2

Conclusions

In this deliverable we show the integration of several components for the demonstration of Scenario 1:
preparation of a recipe. This integration comprises mechanisms for object recognition (Sec. 1.1), planning
(Sec. 1.4), affordances extraction and object replacement (Sections 1.2 and 1.3), and robot manipulation,
for the actual execution of actions (Sec. 1.5).

For the demonstration we used the case of study of a preparation of a cucumber salad. The results
showed that the enumerated mechanisms were successfully integrated for the updating and execution of
plans using structural bootstrapping for missing object replacements.

14

References

[1] M. J. Aein, E. E. Aksoy, M. Tamosiunaite, J. Papon, A. Ude, and F. Wörgötter. Toward a library
of manipulation actions based on semantic object-action relations. In IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pages 4555–4562, 2013.

[2] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter. Learning the semantics of
object-action relations by observation. The International Journal of Robotics Research, 30(10):1229–
1249, 2011.

[3] E. E. Aksoy, M. Tamosiunaite, and F. Wörgötter. Model-free incremental learning of the semantics
of manipulation actions. Robotics and Autonomous Systems (RAS) (In press), 2015.

[4] T. Kulvicius, K. J. Ning, M. Tamosiunaite, and F. Wörgötter. Joining movement sequences: Mod-
ified dynamic movement primitives for robotics applications exemplified on handwriting. IEEE
Transactions on Robotics, 28(1):145–157, 2012.

[5] Wail Mustafa, Dirk Kraft, and Norbert Krüger. Extracting categories by hierarchical clustering
using global relational features. In Iberian Conference on Pattern Recognition and Image Analysis
(IbPRIA), the 7th, 2015. (accepted).

[6] Kamran Parsaye, Mark Chignell, Setrag Khoshafian, and Harry Wong. Intelligent Databases: Object-
oriented, Deductive Hypermedia Technologies. John Wiley & Sons, Inc., New York, NY, USA, 1989.

[7] R. Petrick and F. Bacchus. A knowledge-based approach to planning with incomplete information
and sensing. In Malik Ghallab, Joachim Hertzberg, and Paolo Traverso, editors, Proceedings of
the Sixth International Conference on Artificial Intelligence Planning and Scheduling (AIPS-2002),
pages 212–221. AAAI Press, 2002.

[8] Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami, Dipendra K. Misra, and Hema S. Kop-
pula. Robobrain: Large-scale knowledge engine for robots. arXiv, Artificial Intelligence, Robotics,
1412.0691v1, 2014.

[9] M. Schoeler, S. Stein, J. Papon, A. Abramov, and F. Wörgötter. Fast self-supervised on-line training
for object recognition specifically for robotic applications. In International Conference on Computer
Vision Theory and Applications (VISAPP), January 2014.

[10] Myra Spiliopoulou, Lars Schmidt-Thieme, and Ruth Janning, editors. Data Analysis, Machine
Learning and Knowledge Discovery. Springer, 2014. http://link.springer.com/book/10.1007%2F978-
3-319-01595-8.

[11] S. Szedmak, E. Ugor, and J.Piater. Knowledge propagation and relation learning for predicting
action effects. In Proceedings of the IEEE Intl. Conf. on Intelligent Robots and Systems (IROS
2014), Chicago. 2014.

[12] Mikkel Tang Thomsen, Dirk Kraft, and Norbert Krüger. Identifying relevant feature-action asso-
ciations for grasping unmodelled objects. Paladyn. Journal of Behavorial Robotics, 6(1):85–110,
2015.

[13] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Homogeneity analysis for object-action relation
reasoning in kitchen scenarios. In 2nd Workshop on Machine Learning for Interactive Systems,
(Workshop at IJCAI), page 3744. 2013.

[14] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Scalable, accurate image annotation with joint
svm and output kernels. Neurocomputing, 2015. (accepted).

15

Attached Articles

[AAS+15] A. Agostini, M. J. Aein, S. Szedmak, E. Aksoy, J. Piater, and F. Wrgtter. Using Structural
Bootstrapping for Object Substitution in Robotic Executions of Human-like Manipulation
Tasks. In IROS, 2015. Submitted.

[MXK+15] Wail Mustafa, Hanchen Xiong, Dirk Kraft, Sandor Szedmak, Justus Piater, and Norbert
Krüger. Multi-label object categorization using histograms of global relations. Technical
Report 2015–2, Cognitive and Applied Robotics Group, The Maersk Mc-Kinney Moller In-
stitute, University of Southern Denmark, 2015.

16

	Executive Summary
	Objects in Scene: Object Recognition Mechanisms
	Repository of Objects and Attributes with Roles (ROAR)
	Intelligent database
	Affordance Extraction Based on Vision

	Object Replacement and Plan Updating
	Salad Making Scenario: Planning Domain Definition and ROAR tables
	Plan Execution
	Task Specific Grasping of Unknown Objects

	Demonstrated Cases
	Case 1: No Missing Objects
	Case 2: Cucumber Missing, Replace it with Banana.
	Case 3: Bowl Missing, Replace it with Unknown Object.

	Conclusions

