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A Physician Riding a Donkey, by You Who Can't Do Anything, by
Niko Pirosmanashvili Francisco Goya

Image understanding
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“A harbor with many
dozens of boats; water is
calm and glassy; masts are
all vertical; mountains in
background, blue sky with a
touch of clouds...”

Slide credits: M Turk

Xperience, Summer School, October 1, 2013, Palma, Spain




Human perception

e Inference of contours when there is no contrast in the image

e Inference of objects in clutter (occlusions, missing
information)

e Inference of 3D shape from 2D contours, from textured
patterns

e Inference of motion from static images

e Inference of a true surface color under different lighting
conditions

e Perception is a kind of controlled hallucination [Max Clowes,
Jan Koenderink]

e Vision is an ill-posed problem which requires regularization.

From image to 3-D description
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G. Medioni, Generic shape learning and recognition, Workshop on Generic Object Recognition and Categorization (CVPR 2004)
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Is a general computer vision possible?
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e Reliable results can be obtained
- when data is well-behaved (follows the assumptions)

- when we have strong models (can compensate for missing
data, noise, deviations from assumptions)

e Is a general computer vision possible?
- data is not well behaved
(no purely bottom-up, signal-based
approach will ever work)
- Ill-posed problems, general
regularization approaches fail )

- strong models are needed (prior, knowledge): memory-
based vision (prohibitive complexity?)
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Models

e Blocks world

e Polyhedral models

e Geons/superquadrics
e Regularized data using different functionals
e Statistical models
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Large number of visual object classes

, Summer School, October 1, 2013, Palma, Spain

“Now! That should tle'u up
a few things around here!”
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Intra-class variability, articulations,...

e A large number of object classes

e Significant intra/inter-class variation
e Multiple articulations

e Multiple 3D poses

e Varying illuminations

e Objects can appear at any position
in an image, any scale, orientation...
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Tasks =B

e Recognition of exemplars

e Categorization
- Subordinate-
- Basic-
- Super-ordinate-level categories
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Tasks

Central issues

e Grasping
e Manipulation

e Talking and reasoning
about objects

Central issues:
¢ Representation
« Inference
e Learning

Xperience, Summer School, October 1, 2013, Palma, Spain

Xperience, Summer School, October 1, 2013, Palma, Spain




Requirements for good representations

e Representations, inference and learning: the key
issues

e Requirements:

A Representation should:

* Be generative (robustness): also, support a variety of tasks

* Enable fast and robust (object) detection/segmentation/
parsing

e Scale with the number of classes (modest increase in
memory)

e Accommodate exponential variability (of objects)

* Enable efficient learning

Requirements
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° Inference inference time
- Sub-linear in the number of classes
— Coping with noisy or missing information
(make predictions)

L] Learning should: # of classes
- Require minimal human effort
- Be done incrementally, on-line (no need for re-training the
complete representation)
- Share-ability (in terms of representation and processing)
- Transfer of knowledge (learning time getting shorter)
- Scaffolding (gradual increase of knowledge)
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Our Approach

Compositional hierarchies
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e A 2D shape hierarchy
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3D compositional shape hierarchy
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Norbert Kruger, Peter Janssen, Sinan
Kalkan, Markus Lappe, Ales
Leonardis, Justus Piater, Antonio J.
Rodriguez-Sanchez, Laurenz Wiskott,
Deep Hierarchies in the Primate
Visual Cortex: What Can We
Learn For Computer Vision? IEEE
PAMI 2013, SI: Learning Deep
Architectures

Our approach - representation
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« Object representation: A hierarchical compositional shape vocabulary
* The compositions model "‘\
spatial relations among /N
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Our approach - representation

« Object representation: A hierarchical compositional shape vocabulary
« The compositions model spatial relations among their parts

< Invariance to local deformations
« Exponential flexibility

Layer 3
« Robustness to clutter
« Fastinference

Layer 2

Layer 1

Inference
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« Inference proceeds bottom-up + Indexing and matching

« Reduction in spatial resolution
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indexing
matching learned vocabulary

image
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Inference

« 700x500 images

Detecting multiple categories

image

inferred subgraphs of object hypotheses
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Learning

Learning the hierarchical vocabulary

— Learn the number of . edo o= o )

C bottle cow  motorbike car
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the distributions)
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Learning of structure is unsupervised

Learning of classes is supervised
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Learning
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learning

Layer 1
fixed layer
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Compositional shape hierarchy

Representation of Visual Structure

— Computational plausibility
+ Hierarchical representation
« Compositionality (parts composed of parts)
+ Indexing & matching recognition scheme

— Statistics driven learning (unsupervised
learning)

— Fast, incremental (continuous) learning

» A Computational Model for Learning a Multi-Level Compositional

Layer 3

Layer 2

Layer 1
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Experimental results A~

* Learning a vocabulary from:
— a set of natural images
— a set of “Gaussian noise” images
— aset of “letters” images
« starting from
— a set of oriented edges
— a set of polarity edges
— DOG / on-off cells
* Multi-class object detection
« Share-ability, transfer of knowledge, incremental learning

« Scalability -> Taxonomy of object categories
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Natural images, edge filters A~
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Natural images, polarity filters ﬁ.@

Natural images, DoG filters

EEAN TN Layer 1
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Natural images, edge filters

Letters

Natural objects

Gaussian noise
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Natural images, edge filters A~

Top row: edge filters, bottom row: polar fiters.

(a) natwral objects, (b) faces, () Gauss

Fig. 9. The image points that Layer
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Multi-class learning and detection

Multi-class learning and detection

BB

e Learned vocabulary

Layer 4 Layer 5

Layer O =6 - cbject layer
M Appke logo Mperson Mbotte Mmug swan mcup mcow horse Mcar Mbicycle

face

mgiraffe

e Examples of learned whole-object shape models

giraffe
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Detection

direction

Inference proceeds bottom-up. Active parts can easily be “traced” down to the image.
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Object detection and recognition
¢ Invariance
- real / hand
drawn
- scale
82

Object detection and recognition
e Invariance
- intra-class
variability
81
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Detection of multiple object classes @
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Detection of multiple object classes
TN
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Detection of object classes, cups
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Object detection and recognition -

e Detecting unknown categories, triggering learning
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Size of the vocabulary

¢ Size of the vocabulary as a function of the
number of learned class

Size of representation (¢ classes)
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Sharing of features

¢ Sharing of features between classes

features

Layer 4

Layer5

1234567809101112131415

_—
classes

Multi-class learning strategies
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e Feature sharing among similar and dissimilar classes
- Joint achieves the best sharing of features. Sequential is comparable.
- Sharing is also present for visually dissimilar objects (lower layers)

Joint
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Sharing of features
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Transfer of features

e Transfer of features in incremental learning

Degree of transfer per layer

-
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number of learnt classes
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Shape consistency and deformations

* Example: putting two compositions (blue and yellow) representing
a leg into correspondence by global matching of two cows.

Two compositions are matched, if the global matching maps supports
of the two compositions one to another (significant portion of them).

Learning shape consistency and deformations
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e Examples: Deformations/articulations of a cow model.

Transfer of deformations
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¢ Transfer of deformations to novel classes:
— Example: transfer of variation of cow parts to one horse training image

Transfer of deformations
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¢ Transfer of deformations to novel classes:
— Results: Recall at EER for horses at different number of training

examples by borrowing from cows

recall at EER

Hetransf from cow
Hon cow

H on cow+transf

L=+ nof train examples
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Adding discriminative power

e Goal: Identify subset of parts and combine them
into a discriminative node to improve discrimination.

Score(cow)=0.75
score(horse)=0.25

Score(cow)=0.9
score(horse)=o.1

s(oreé(ow):c 2

score(horse)=0.8

smre}(uw):a 8
AL score(horse)=0.2
» ooon00000e

(9}

Two similarly likely hypotheses

Q' asesce

Hypotheses likelihoods improved
Hierarchically organized vocabulary
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Adding discriminative power

e Which parts activate at detection?

Cumulative histogram of responses over parts:

h h,h, e hy e h

Xperience, Summer School, October 1, 2013, Palma, Spain

Adding discriminative power

e Which parts activate at detection?

Cumulative histogram of responses over parts:

layer 2 &

h, h, h, - h, -

1

Adding discriminative power
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layer 6

Discriminative
cow/horse
OR node

layer 4

f(h;®) =hTe
Linear combination of parts responses

layer 3

Sparse solutions of © identify

discriminative parts in our library! layer2
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Large scale experiments

« Experiment on LabelMe dataset

A ISR

« 175 object classes: shape as main clue:

— car in different 3D views, motorbike, mug, bottle, orange, street-lamp, window, person,
bird, laptop, mouse, ...

« 30 examples per class

Feature hierarchies
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e Sharing features among object classes; logarithmic increase
in memory storage

e Top, object, layer: linear; problem with many object classes

a‘ﬂ‘\, edo ﬂ .

cow " swan . motorbike bottle giraffe
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Final Representation
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e Final representation: TCT (taxonomy of obJect classes) + LHOP

(hierarchy of shape features)
e Logarithmic in the size of §
the shape of each object 5
class .g

o Efficient (logarithmic?) in
the number of object
classes

e Adding discriminative nodes

hierarchical representation
of object structure (shape)

the object models

learnina
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Summary and discussion
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e Computational principles towards building complex
representations
e Scaling in terms of memory, speed-up of inference, efficient
learning
e General insights
- Modeling/memorizing large-scale spatial-temporal patterns
* Other modalities
* Other senses
* Sensing as a “controlled hallucination”
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Thank you

Work in progress

— relate parts to 3D concepts /

affordances / grasping modes,
— relate parts to actions, o s s e
— relate (semantic) parts to words, i ,,,,, '
— attention, context E 1%
— hierarchical compositionality for

sound, music, speech, touch,

motor system s fowm i
— relations to biology

Curre

human
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