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Non-Rigid Structure from Motion

Problem statement: Point a camera at a deforming object and
generate a detailed 3D model by exploiting 2D motion.

• No given models, no training data, no extra sensors.

Only input: 2D video data
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Why is it important?

Motion capture/Animation Gesture analysis Laparoscopy

Augmented reality (Pilet et al. 2008) Cloth animation
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Rigid Structure from Motion

• The rigidity prior is enough to make the problem well posed.

• Commercial applications exist.

• Mature problem / Solved?

• Not quite: Real time, large scale, dense – open problems.

(Newcombe et al. ICCV’11) (Agarwal et al. ICCV’09)
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But the Real World is Non-Rigid
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NRSfM: An ill-posed problem → Priors

Statistical priors

Low rank shape basis.
Gaussian priors.
Dynamics. Bregler et al. CVPR 2000.

Known 3D template

Physical priors

Single object (C0 continuity).
Smooth surface (C1 continuity).
Inextensibility, isometry.
Temporal and spatial smoothness.
Piecewise planar/quadratic/rigid.
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Current Research Threads I

1. Non-Rigid 3D Reconstruction with a Global Model

Del Bue-Agapito IJCV’04, Del Bue et al. CVPR’06, Paladini et al. CVPR’09, Paladini et al. ECCV’10, Fayad et al. ECCV’10

Russell et al. CVPR’11, Paladini et al. IJCV’12, Del Bue et al. PAMI’12, Garg et al. IJCV’13, Garg et al. CVPR’13
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Current Research Threads II
2. Reconstructing Extreme Deformations with Connected Local Models

Articulated Non-Rigid

Russell et al. CVPR’11, Fayad et al. ICCV’11, Pitelis et al. CVPR’13
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Current Research Threads III

3. Towards Direct Non-Rigid Modelling from Pixel Intensities

• Jointly solving for dense matching, segmentation and 3D
reconstruction directly from pixel intensities for multi-rigid scenes.

Roussos-Russell-Garg-Agapito ISMAR’12
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Roadmap

• Non-Rigid Reconstruction with a Global Low Rank Model

• Reconstructing Extreme Deformations with Connected Local Models

• Direct Dense Multibody SfM from Pixel Intensities.
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Non-Rigid SFM: Low Rank Shape Model

The 3D shape is represented as a linear combination of basis shapes.
(Bregler et al. CVPR2000)

Si =
k∑

d=1

lidBd
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Non-Rigid Structure from Motion

0

3D points are projected onto the image via an orthographic camera.

Wi = Ri Si

=

Wi = Ri(
k∑

d=1

lidBd)
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Non-Rigid Structure from Motion

Measurement matrix is rank 3K → Bregler et al. CVPR 2000

• Closed form Solutions

1. Factorization SVD(W) = MS = M̂QQ−1Ŝ.
2. Metric upgrade: Estimation of mixing matrix Q3K×3K is non-linear.

Bregler et al. CVPR’00, Brand CVPR’05, Xiao et al. IJCV’06, Akhter et al. CVPR’09, Dai et al. CVPR’12

• Energy Optimization:
F∑
i

∣∣∣∣∣
∣∣∣∣∣Wi − Ri(

k∑
d=1

l idBd)

∣∣∣∣∣
∣∣∣∣∣
2

.

Torresani et al. PAMI’08, Paladini et al. IJCV’12, Del Bue et al. PAMI’12
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Low Rank Shape Model: Results
Torresani-etal PAMI’08

Paladini-Bartoli-Agapito ECCV’10
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Dense Low-Rank Non-Rigid 3D Reconstruction

Garg-Roussos-Agapito CVPR’13
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Orthographic Projection Model

Our geometric model is:
W = RS

• W is a known matrix of 2D optical flow tracking data

• R is a block diagonal stacking of projection matrices Rf

• S stacks the deformable 3D shapes for all F frames

W︸︷︷︸
2F×N

=


u11 · · · u1N

v11 · · · v1N

...
. . .

...

uF1 · · · uFN
vF1 · · · vFN

 , R︸︷︷︸
2F×3F

=

 R1 ©
. . .

© RF

 , S︸︷︷︸
3F×N

=



X11 · · · X1N

Y11 · · · Y1N

Z11 · · · Z1N

...
. . .

...

XF1 · · · XFN

YF1 · · · YFN

ZF1 · · · ZFN
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Priors

We propose to use two priors:

• The 3D trajectories lie on a low dimensional linear subspace, i.e. the
shape matrix S is inherently low rank.

• The 3D trajectories of the points are spatially smooth.

We cast the dense NRSfM problem as a variational energy minimisation
problem:

E (R,S) = λEdata + τElow rank + Esmooth
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Energy to minimise

We cast the dense NRSfM problem as a variational energy minimisation
problem:

E (R,S) = λEdata + τEtrace + Ereg

where

•
Edata =

1

2
‖W − RS‖2

F

•

Etrace = ‖S‖∗ =

min(3F ,N)∑
j=1

Λj

•

Ereg =
3F∑
i=1

N∑
p=1

‖∇Si (p)‖

OPTIMIZATION: Alternate between estimating R and S. R → bundle
adjustment, S → primal-dual regularization + soft impute.
Efficient Primal-Dual Optimization. Highly parallel → GPU.
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Experimental Results: Real Sequences



Introduction Dense Non-Rigid SfM Dense Video Registration Networks of Overlapping Models CLS Dense Multibody SfM

Experimental Results: Synthetic Sequences
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How do we obtain dense correspondences?
Non-Rigid Video Registration with Subspace Constraints

Garg-Roussos-Agapito (IJCV’13)

Register video (I1, I2, . . . IF ) to a single reference template Iref .

such that In(x + u(x; n)) ≈ Iref (x) ∀ n ∈ {1, . . . ,F}
Assuming
• Presence of non-rigid motion.
• Smooth deformations.



Introduction Dense Non-Rigid SfM Dense Video Registration Networks of Overlapping Models CLS Dense Multibody SfM

How do we obtain dense correspondences?
Non-Rigid Video Registration with Subspace Constraints

Garg-Roussos-Agapito (IJCV’13)
Register video (I1, I2, . . . IF ) to a single reference template Iref .

such that In(x + u(x; n)) ≈ Iref (x) ∀ n ∈ {1, . . . ,F}
Assuming
• Presence of non-rigid motion.
• Smooth deformations.



Introduction Dense Non-Rigid SfM Dense Video Registration Networks of Overlapping Models CLS Dense Multibody SfM

How do we obtain dense correspondences?
Non-Rigid Video Registration with Subspace Constraints

Garg-Roussos-Agapito (IJCV’13)
Register video (I1, I2, . . . IF ) to a single reference template Iref .

such that In(x + u(x; n)) ≈ Iref (x) ∀ n ∈ {1, . . . ,F}
Assuming
• Presence of non-rigid motion.
• Smooth deformations.



Introduction Dense Non-Rigid SfM Dense Video Registration Networks of Overlapping Models CLS Dense Multibody SfM

How do we obtain dense correspondences?
Non-Rigid Video Registration with Subspace Constraints

Garg-Roussos-Agapito (IJCV’13)
Register video (I1, I2, . . . IF ) to a single reference template Iref .

such that In(x + u(x; n)) ≈ Iref (x) ∀ n ∈ {1, . . . ,F}
Assuming
• Presence of non-rigid motion.
• Smooth deformations.



Introduction Dense Non-Rigid SfM Dense Video Registration Networks of Overlapping Models CLS Dense Multibody SfM

Trajectory Basis


u(x; 1)
u(x; 2)

.

.

.
u(x; F )
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Optical flow with soft constraint

Our proposed multi-frame optical flow energy:

E
[
u(x ; n) , L(x)] = α

Brightness Constancy︷ ︸︸ ︷∫
Ω

F∑
n=1

|I (x + u(x ; n) ; n)− I (x ; n0)| dx

+ β

∫
Ω

F∑
n=1

∥∥u(x ; n)−
R∑
i=1

qi (n)Li (x)
∥∥2
dx︸ ︷︷ ︸

Subspace Constraint

+

∫
Ω

R∑
i=1

‖∇Li (x)‖ dx︸ ︷︷ ︸
Spatial Regularisation

Efficient Primal-Dual Optimization. Highly parallel → GPU
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Results: Dense Video Registration – Face sequence

• Robust Subspace Constraints for Video Registration.
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Results: Dense Video Registration – Heart sequence

• Robust Subspace Constraints for Video Registration.
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Piecewise Reconstruction for Extreme Deformations

• Intuition: Local models have fewer parameters therefore they are
easier to optimise and less prone to overfitting.

(Varol et al. ICCV’09)

• Simple idea:

1. The first image is divided into overlapping patches.

2. The patches are reconstructed independently in 3D.

3. Overlapping points are used to enforce spatial consistency stitch
patches to create a continuous global surface.
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Piecewise Reconstruction of Deformable Surfaces

Existing approaches

Piecewise Planar Local Isometry Piecewise Quadratic

(Varol et al. ICCV’09) (Taylor et al. CVPR’10) (Fayad et al. ECCV’10)
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Division into overlapping patches

Fayad-Del Bue-Agapito ECCV’10 Taylor et al. CVPR’10

Regular grid Too granular

• What is the best division of points into patches?

• What is the best assignment of points to models?
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Example: Piecewise Reconstruction

Reconstruct as piecewise planar from 2 frames.
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Geometric Multiple Model Fitting
Isack and Boykov IJCV ’11 PEARL

• The problem of multiple model fitting is formulated as a labelling
problem using a Markov Random Field.

• The labels xi represent the parameters of a model that must be
fitted to the data.

1. Propose an excess of models

2. Assign best model to each point – minimize reprojection error

min
x

E (x) =
∑
i∈P

Ui (xi )

3. Add Pairwise Potentials and Sparsity inducing MDL prior

min
x

E (x) =
∑
i

Ui (xi ) +
∑

(i,j)∈N

Pi,j(xi , xj) + MDL(x)

4. Alternate between assigning points to models and re-estimating the
parameters of the models.
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Multiple Model Fitting

Isack and Boykov IJCV ’11
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What if we want to do reconstruction?

If every model is independent each plane has a separate depth ambiguity.

• Resolve depth by matching camera motion for each model.

• Only works for rigid scenes.
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Overlapping Models

• Instead, we need to segment overlapping models, and force
reconstructions to agree about the regions of overlap.

• Double count points in overlap - penalises long/jagged boundaries

• Implicit higher-order smoothing comes from forcing models to
explain the same data.
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Making Models Overlap

  

Points Model Sets

Combined 
Reprojection Error

Points are assigned to a sub-set of models rather than just one
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Trick: Use topological constraints
Russell-Fayad-Agapito CVPR’11

New labels: A point is an interior point of a model, if all of its
neighbours belong to the same model
Key idea: Each point must be an interior point of at least 1 model

The cost of a point taking an interior label requires adding the cost of all
its neighbours taking the same label.
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We solve this with α-expansion

Each point belongs to the interior of exactly 1 model

“Only” MP possible solutions instead of 2M
P

  

Our code is publicly available!
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Applications: Articulated Structure from Motion

Goal: To recover the 3D shape and pose of an articulated object from a
monocular video using only 2D tracking data as input.
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Articulated Structure from Motion (ICCV ’11)
Fayad-Russell-Agapito ICCV 2011

Articulated motion is piecewise rigid motion.
Areas of overlap are joints.
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Articulated Motion

• Simultaneous segmentation of the body into rigid segments and 3D
reconstruction.

• Estimating the model parameters Ri , ti and S for each rigid segment
can be formulated as the factorization problem which minimizes
image reprojection error:

arg min
Ri ,ti ,S

F∑
i=1

|| ~Wi − RiS− ti ||
2

• Decomposing the points into rigid pieces, allows us to use
pre-existing robust methods to reconstruct partial tracks
(Marques+Costeira’08).

• We create a skeleton by ‘joining up’ the joint centres
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Articulated Motion: Results

Fayad-Russell-Agapito ICCV 2011
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Piecewise Rigid Reconstruction: Input
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Piecewise Rigid Reconstruction: Results
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Learning Manifolds as Connected Linear Subspaces

Pitelis-Russell-Agapito CVPR’13

• Alternate between
• Assigning points to

overlapping local
linear subspaces.

• Fitting subspaces to
points using PCA.

• Advantages:
• Can model closed

manifolds.
• No need to unfold.
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Results: 3D Motion Reconstruction
1. Manifold is learnt on 3D mocap data from 1 individual.
2. Input: 2D data from a different individual.
3. Inverse problem: reconstruct 3D pose given 2D data + manifold.
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Direct Dense Multibody SfM from Pixel Intensities

Roussos-Russell-Garg-Agapito ISMAR’12

Problem statement: Given a scene with an unknown number of
independently moving objects estimate automatically:

1. Segmentation of the scene into objects.

2. Dense 3D model of each object.

3. Rigid motion of the objects.

Directly from pixel intensities not from tracks or optical flow.
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Multiple Model Fitting

• Strength of our approach: to optimize a single cost function to
estimate all the variables:

1. Dense depth map: d(x) : Ω→ R
2. Labelling: L(x) : Ω→ {1, . . . ,N}
3. Rigid transformations: T`f

4. Number of regions: N
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Multiple Model Fitting

E [d(x), L,T ] = λEdata + Ereg + βEpotts + γmdl.

• Edata: average photometric cost.

• Ereg : TV regulariser over the depth map.

• Epotts : regulariser over the segmentation.

• mdl: induces sparsity.

E = λ

∫
Ω

C (x, d(x), TL(x)) +

∫
Ω

‖∇d‖σ dx + β
N∑
`=1

Per(Ω`) + γmdl.
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Multiple Model Fitting

E [d(x), L,T ] = λEdata + Ereg + βEpotts + γmdl.

• Edata: average photometric cost.

• Ereg : TV regulariser over the depth map.

• Epotts : regulariser over the segmentation.

• mdl: induces sparsity.

E = λ

∫
Ω

C (x, d(x), TL(x)) +

∫
Ω

‖∇d‖σ dx + β

N∑
`=1

Per(Ω`) + γmdl.
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Optimization

Our algorithm is a hill-climbing approach that alternates between:

1. Estimating depth-map given a segmentation and rigid motions.
We use a dense variational approach (DTAM Newcombe-Lovegrove-Davison ICCV’11)

2. Estimating segmentation given rigid motions and a depth-map.
We use the inference approach of Isack and Boykov IJCV’11 (PEaRL)

3. Estimating rigid motions given depth-map and segmentation.
We use our novel dense tracking algorithm.

Until convergence.
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Results: Dense Depth Map Estimation

• Strategy similar to DTAM1.

Reference frames Initialization of d(x) Final regularized d(x)

1
R. Newcombe, S. Lovegrove, A. Davison. DTAM: Dense tracking and mapping in real-time. ICCV’11.
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Results: Segmentation

Initialization Segmentation using Epotts and mdl
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Results: Dense 3D reconstructions
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Augmented Reality applications

• Accurate estimation of the surfaces geometry.

• High quality occlusion reasoning.
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Augmented Reality applications

• Accurate estimation of the 3D motions.

• High quality occlusion reasoning.
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Conclusions: Future Directions

• Unified Framework: 3D shape estimation directly from pixel
intensity information. Simultaneous 2D registration + segmentation
+ 3D reconstruction.

• Reconstruction in the Wild: Robustify approaches, dealing with
multiple non-rigid objects, severe occlusions, introduction of new
tracks, changes in lighting. Complete reconstruction of almost any
video.

• Towards Real-Time: Online formulation of NRSfM – dense
non-rigid models on-the-fly.

• Focus on Domain-specific Applications: laparoscopy, augmented
reality, cinema post-production, human motion reconstruction.
Semisupervised and unsupervised learning where additional 3D
structural information could supplement limited annotation data.
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