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In this paper, we present an approach to imitation learning of arm movements in
humanoid robots. Continuous hidden Markov models (HMMs) are used to generalize
movements demonstrated to a robot multiple times. Characteristic features of the per-
ceived movement, so-called key points, are detected in a preprocessing stage and used
to train the HMMSs. For the reproduction of a perceived movement, key points that are
common to all (or almost all) demonstrations, so-called common key points, are used.
These common key points are determined by comparing the HMM state sequences and
selecting only those states that appear in every sequence. We also show how the HMM
can be used to detect temporal dependencies between the two arms in dual-arm tasks.
Experiments reported in this paper have been performed using a kinematics model of the
human upper body to simulate the reproduction of arm movements and the generation
of natural-looking joint configurations from perceived hand paths. Results are presented
and discussed.

Keywords: Imitation learning; cognitive behavior; dual-arm manipulation; hidden
Markov models; human motion capture.

1. Introduction

Humanoid robots are expected to exist and work together with human beings in
everyday environments some day. In doing so they need to be able to interact
and cooperate with humans. Interaction is facilitated if the robot behaves in a
human-like way, which implies that its movements look natural. This is not only
advantageous for tasks involving direct physical cooperation between humans and
robots; even if a robot acts independently, its movements should appear familiar
and predictable to us humans. In addition to that, it is probably also necessary for
a robot to have a human-like appearance in order to be accepted by society. Given
the dynamic character of the environment in which humanoid robots are expected
to work, they need to have a high degree of flexibility. They need to be able to adapt
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to changes in the environment and to learn new tasks continuously, and they are
expected to carry out a huge variety of different tasks. This distinguishes them from
industrial robots, which normally need only to perform a small number of rather
primitive tasks in a static environment. It seems impossible to create a humanoid
robot with built-in knowledge of all possible states and actions. Thus, there has to
be a way of teaching the robot new tasks.

Teaching a robot can be done in a number of ways, for example, by means
of a robot programming language or a simulation-based graphical programming
interface. Another method is “teaching by guiding,” where the instructor operates
a robot manipulator while its motion is recorded. The recorded motions are then
added to the robot’s action repertoire. Such techniques are well-suited for industrial
robots; however, in the domain of humanoid robots, where robots are expected
to cooperate with unexperienced users, they suffer from several drawbacks. They
are lengthy, complex, inflexible and require special programming skills or costly
hardware.! That contradicts the purpose of humanoid robots, which is to make life
easier for us. It is essential that the control of such robots will not be too difficult
and time-consuming.

An approach that addresses both issues (human-like motion and easy teaching
of new tasks) is imitation learning: it facilitates teaching a robot new tasks and
at the same time makes the robot move like a human. Imitation learning is basi-
cally the concept of having a robot observe a human instructor performing a task
and imitate it when needed. Robot learning by imitation, also referred to as pro-
gramming by demonstration, has been dealt with in the literature as a promising
way to teach humanoid robots, and several imitation learning systems and archi-
tectures based on the perception and analysis of human demonstrations have been
proposed.?”” In most architectures, the imitation process goes through three stages:
perception/analysis, recognition and reproduction.® An overview of the basic ideas
of imitation learning in robots as well as humans is given by Schaal in Ref. 9.

In this paper we focus on a simple form of imitation: a movement is demonstrated
to a robot multiple times by a human instructor, subsequently generalized (using the
data from all demonstrations) and finally reproduced by the robot without trying to
infer the goal of the movement. As described in Sec. 3, we have not yet reproduced
movements on a robot but have instead simulated the reproduction stage using a
software model that we created for this purpose.

Our work was largely inspired by previous work of Calinon and Billard. In Refs. 5
and 10, they describe an approach to imitation learning that makes use of hidden
Markov models (HMMs)!! to learn and reproduce movements demonstrated by a
human instructor multiple times (while HMMs have become very popular for the
recognition of gestures or speech, they have not been widely used for the reproduction
of movements). After the hand path and joint angle trajectories have been perceived,
the data is reduced to a subset of critical features in a preprocessing stage using
certain criteria (see Ref. 10). Separate HMMs (one for the hand path and one for
each joint angle trajectory) are trained with those “key points.” The HMMs are
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subsequently used to recognize further demonstrations of the same movement as
well as to imitate the demonstrated task.

2. Our Approach

We implemented an approach similar to that in Ref. 10 for dual-arm movements
that also uses HMMs to imitate movements shown to a robot multiple times. In
our method, however, the data is preprocessed in a slightly different way and, more
importantly, not all states of the resulting HMMs are used to reproduce movements.
Instead; we try to identify characteristic features that can be observed in all (or
many) demonstrations and consider those only when reproducing a movement. We
also show how those common features can be used to detect possible temporal
interdependencies between the two arms in dual-arm tasks. Moreover, we track the
orientation of the hand and not just its position, since the correct orientation is
essential for carrying out complex tasks. In contrast to Ref. 5, we do not, however,
try to determine which features of a movement (hand path, joint angles, etc.) are
most relevant to the correct imitation of a task.

We use three different HMMs for each arm: one to encode the position of the
TCP (tool center point — a reference point on the hand), i.e. the hand path, with the
Cartesian coordinates being represented by three-dimensional output distributions;
one for the orientation of the TCP (described by three angles); and one for the
joint angle trajectories where the dimension of the output distributions is equal to
the number of observed joint angles (in our case, 7; see Sec. 3). Those HMMs are
denoted by Ap, A\, and A;.

2.1. Preprocessing: detection of characteristic features

A recorded movement is represented by a set of time-discrete sequences: per arm
there is one sequence, Py 1, P42, .- -, Pa ), that describes the positions of the TCP
over time; one sequence, Og,1, 04,2, . '."Odvl(dﬁ that describes the orientations of
the TCP; and seven more sequences, 9?1717 9?172, . ,Gﬁu(d), that each specify the joint
angle trajectory of joint j [I(d) denotes the length of demonstration d]. We omit the
demonstration index d whenever it is not needed to distinguish between demonstra-
tions. P; ; and O; ; are three-dimensional vectors. As in Ref. 10, we detect charac-
teristic features of the perceived movement — key points — in a preprocessing stage
and use only those to train the HMM. In doing so, we avoid having a high num-
ber of states and facilitate the matching of (or between) multiple demonstrations
(see Subsec. 2.3). Those features are a subset of the aforementioned observation
sequences. Since we try to detect distinctive features, it should still be possible to
reconstruct the original movement well.

The key points are detected separately for the position, orientation and joint
angles of each arm. We use different criteria than Ref. 10 to identify key points,
described as follows. For joint angles, we use the following criterion. Let 74 ,,, denote
the time stamp of the mth joint angle key point of demonstration d, i.e. its position
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in the sequence 9;179;27 . ’%,l(d)' Then 64, = (957“ .. .79%), where N denotes
the number of joints, are the joint angles of the mth key point jKg ., (or just Kq m
if the context is clear), with time stamp 74, = i, if and only if

Y A ; J J
3] : Gd_’i =0,7— Tdm—1 > €1, |6‘d,i — eda"'d,mfl| > €9,
c L pd J ;
Vv dj: |9d,i — 6d,"'d,m—1| > €3, 1 — Tdm—1 > €4,
J J ;
|0d7n - 0d7rd7m_1| < €3 Vn € [ZaTd,rn—l)-

This means that whenever, for any j, 92_ ; reaches an extremum (i.e. changes direc-
tion) or stops changing, sufficient time’(el) has passed since the creation of the
previous key point and the joint angle at i differs from the angle at 74,,—1 by at
least €3, a key point K is created. The second part of the condition ensures that
when an angle that has stayed the same for some amount of time (e4) starts chang-
ing again, a key point is created as well. Figure 1 shows three different candidates for
key points that, given appropriate thresholds, could all satisfy the above criterion.
Any point between 6, and 6., however, would not be a key point.

For the orientation angles of the TCP (key points oK) the same criterion is
used, but with possibly different threshold values (e5 — eg). For TCP positions, we
use a slightly different criterion. A point P ; is a key point pKg.., (or just Kgm)
in the sequence of points Py 1,. .., Py (q) if and only if

Z(Pii—Pii1,Pii— Paji1) < 7 — e,
\% HP;i — Pd;elH < €100 — Tdym—1 > €11, | P; — Pdn—{:m_lH > €12,
\ HPL- - Pd,r,:,mle > €13, — Tdm—1 > €14,

| Pan — Parg 1|l < €15 V1 € [Tam—1,i) ,

where 74 ,, denotes the time stamp of the mth position key point of demonstration d.
So, if the angle between the vector that goes from P; to its predecessor P;_1 and
the vector that goes from P; to its successor Pj1q is less than m — €9 (see Fig. 1), P;
is considered a key point. In practice we would want eg to be fairly high so that only
sharp corners in the hand path would be detected as key points. Also, as for the

P, Piiy

- 1 -

Fig. 1. Potential key points (left) and the key point criterion (right).
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joint angle trajectories, if the position remains unchanged for some time or starts
changing again, a key point is created as well. Reasonable values for €,..., €15
can be determined experimentally. In Ref. 10, hand path key points are created
only when there is a change in the X-, Y- or Z-direction. However, there can be
significant changes of direction in a 3D path that do not necessarily result in a
reversed direction of any single coordinate. Our criterion for the hand path has the
advantage that such key points are also detected because it takes the angle into
account.

2.2. HMM structure

As mentioned before, we use multiple HMMs for different kinds of observations (joint
angles, TCP position, TCP orientation). Each HMM is trained with the key points
of all demonstrations using the Baum-Welch algorithm for multiple observations.'?
Each training sequence consists of the key points of the respective demonstration.
For a given observation sequence, the Viterbi algorithm (see Ref. 11) returns the
optimal state sequence of an HMM with respect to that observation sequence, i.e. the
sequence of states most likely to generate that observation sequence. Therefore, if
used on an HMM with the key points of one of the demonstrations as the observation
sequence, the Viterbi algorithm would yield a sequence of states that could be said to
correspond (in a probabilistic way) to the key points of the observed movements. Of
course, the key point corresponding to a state might not occur in all demonstrations;
a state could very well represent a key point of only one demonstration.

Since the states of the HMMs roughly correspond to the key points, it seems
reasonable to set the number of states equal to the number of key points. However,
we use multiple demonstrations to train the various HMMs and each demonstration
might have different key points; therefore, the HMMs should have as many states
as there are distinct key points in all demonstrations. We do not know in advance,
though, which of the key points of different demonstrations are equivalent, so we
have to use an estimate for the number of states. In our experiments, we set the
number of states to maxgy k(d) - 2, where k(d) denotes the number of key points in
demonstration d.

This is of course not a very satisfying solution and we are still working on this
problem. The standard HMM architecture that we use does not appear to be per-
fectly suited for our approach. What we would like to have is a model that has a
certain number of main states for important key points that appear in most demon-
strations, and that allows us to insert as many states as necessary in between those
main states for key points that appear in only one or only a few demonstrations. It
should also allow for skipping states that might be key points in most but not all
demonstrations. Profile HMMs, a special kind of HMMs, which are commonly used
in bioinformatics to align DNA sequences, have those properties.'® However, they
use discrete output variables and we have yet to determine how such an architecture
could be used with continuous variables and in the context of our method.
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The HMMs we use are left-right models,!! i.e. there are no state transitions
between two states S; and S; if j < 4. That is because we want the models to
reflect the sequence of key points over time, and thus it should not be allowed to
go backward in time.

We use continuous HMMs, with the output distribution in each state represent-
ing whatever is encoded in the HMMs (for example, the TCP position or the angle
of a specific joint) at a certain time given by the time stamp of the corresponding
key point(s) (if multiple key points correspond to a state, we compute the average
of their time stamps and associate that average time stamp with the state). The
output probability is modeled by the density function of a multivariate Gaussian
distribution. We do not use mixtures of such density functions — this is crucial if we
want to use the HMMs to reproduce a generalized movement because we consider
the means of those functions to be the generalized positions, orientation angles and
joint angles (as explained also in the next two paragraphs); as such, they have to
be scalar values.

Before the training takes place, the HMMs are initialized as follows. The initial
state probabilities 7; are set to equal values that sum to 1. They are not particularly
important, since they get changed quickly by the Baum—Welch algorithm. We set
the initial transition probabilities a;; in such a way that a transition from a state
S; to a state S; is most likely for j = ¢+ 1, and the less likely the higher j — 1
gets. For the sake of simplicity and to make the models more robust, our covariance
matrices cov;; of the multivariate Gaussian density functions are diagonal matrices,
which means that cov;; = 0 for ¢ # j. The variances (cov;;) are initialized with high
values. The means p; are all initially set to 0 (unlike in Ref. 10, we do not initialize
them with the key point values because we do not know in advance which state
corresponds to which key point).

2.3. Common key points

As described earlier, the states of the HMMs represent key points of the demon-
strations. A key point may, however, only occur in some of the demonstrations.
Thus, the question arises as to which states of the HMMs should be used for the
reproduction. In Ref. 10, the reproduction of a movement is triggered by another
demonstration of the same movement. The Viterbi algorithm is then used to deter-
mine which states of the HMMs match the key points of that demonstration most
closely; those states are then used for the reproduction.

In our approach, however, the reproduction of a movement is not necessarily
triggered by another demonstration of that same movement. We use only those key
points for the reproduction of a movement that are common to all (or almost all)
demonstrations and call them “common key points.” The reason for that is that a
key point of a single demonstration is not necessarily a characteristic feature of the
movement, in which case it would be reasonable not to consider it for the repro-
duction. But how do we know what key point in one demonstration corresponds
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to some key point in another demonstration? This is a classic matching problem
which could, for instance, be solved by DP matching. However, we actually use our
HMMs to match key points across demonstrations. We use only those states of the
HMMs for the reproduction that represent key points which are shared by all (or
almost all) demonstrations.

Formal definition. Let D denote the number of demonstrations. A common key
point is defined as a 3-tuple:

Cj = ((Z'j71, N ,ij7D),Tj, Vj),

where (ij1,...,%;,p) denotes the indices of the corresponding key points of the
different demonstrations. The D-tupel T} = (71,i;,,...,7D,i; ,) contains the time
stamps of those key points, while the n-tuple v; = (ujl ..., V1) describes the values

of the trajectory to be reproduced (i.e. joint angles where n =number of joints,
Cartesian coordinates where n = 3 or orientation angles where n = 3 as well) at
that common key point. It should be noted that those values are not equal to the
values of any key points; they are the means of the HMMs’ output density function
of the state that corresponds to the key points (K1, ,,...,Kp, )

Detection of common key points. For each demonstration we have a list of key points:
Kaz, .-, Kq ), where d denotes the number of the demonstration, and k(d) stands
for the number of key points. By using the Viterbi algorithm on the HMMs for each
such sequence of key points, we get the sequences of states that correspond best
to those key points (more precisely, the sequences of states that would most likely
output the key points). Let Sq ; denote the state that corresponds to the jth key
point of the dth demonstration. Common key points can then be detected as follows:

K., K24;4,..., Kp,; , form a common key point,

Cj = ((ij1,---15p), Tj,vj) © Stijn = S22 = = SDi; -

So only those key points of one demonstration that correspond to a state which
also corresponds to key points in all other demonstrations are considered common
key points. In Fig. 2, the bold circles are the optimal state sequence returned by
the Viterbi algorithm for the key points of each demonstration. For example, Sy
corresponds to the key points K 4, K33 and Kj. Clearly, only S, Si and Ss
represent common key points here. In general, some of the demonstrations are likely
to be erroneous, so it seems reasonable to ease the above constraint by saying that
it suffices if the majority (e.g. 80%) of the demonstrations have a key point that
corresponds to the same state.

Generating a generalized movement with common key points. We can reproduce a
generalized movement that is basically the average of all demonstrations and —
more importantly — uses only the common key points of all demonstrations, as
follows. We consider only those states of the HMMSs that correspond to common
key points; we then take the means of the output density functions (PDFs) of those
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Demonstration 1

Fig. 2. Identifying common key points — S1, S4 and Ss are the only states representing common
key points.

states (in order) and what we get is a sequence of positions, orientations and joint
angles that can be used to reproduce the movement. However, two issues remain to
be resolved before the movement can be regenerated from the common key points.
First, what time stamps should be associated with each of those common key points?
One possibility is to simply take the average of the time stamps 7} of all the key
points that constitute a common key point. Second, the positions and orientations
are of no use by themselves if we want to reproduce a movement on a robot or a
software model of the human body; they have to be transformed to joint angles.
That can be done with an inverse kinematics algorithm.

2.4. Reproduction

The detection of common key points is performed separately for each of the six
HMMs. Thus, we get sequences of points that are not necessarily in lockstep;
they do not have to occur simultaneously. We interpolate between common key
points to solve that problem. For example, for each common joint angle key point,
we interpolate between the common position and orientation key points closest
in time to determine the TCP position and orientation at the same time. That
way we obtain a sequence of common key points of which each common key
point has values for the TCP position, the TCP orientation and all joint angles of
both arms.
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Since the common key points describe only characteristic features of the trajec-
tories and not the whole trajectories, we also have to interpolate between them to
obtain actual trajectories that can be used to imitate a movement. Both spline and
linear interpolation can be used for that purpose (we have implemented only linear
interpolation so far).

So, eventually, we obtain time-discrete sequences for the TCP position and ori-
entation as well as for all joint angle trajectories that each describe the movement
at every point in time (using a certain sampling rate). The sequences of TCP posi-
tions and orientation angles are then transformed to joint angles with an inverse
kinematics algorithm, so that they can be used for the reproduction.

The resulting joint angle sequences éf are different from the joint angle sequences
95 which are obtained directly from the joint angle HMMs. A weighting factor
w € [0,1] is used to determine the relative influence of 6/ and 6/ on the joint angles
67 which are used to generate the final motion to be executed by the robot:

0] =wx b 4+ (1 —w)*6.

This weighting factor can be set by the user. Since the joints of the robot are usually
not totally equivalent to the joints of the human demonstrator, the human joints
have to be mapped to the robot’s joints. This can be done in different ways. One
can try to approximate the joint angle trajectories of the demonstrated movement
as closely as possible, making the imitation look natural. However, the hand path
might not be reproduced very well. Alternatively, one can try to imitate the hand
path as accurately as possible using joint angles determined by an inverse kinematics
algorithm which might deviate strongly from the joint angle trajectories perceived
in the demonstration. The former is achieved by using a weighting factor of w = 1,
while for the latter one would set w to 0. The whole process from perception to
reproduction is depicted in Fig. 3. As in Ref. 10, the HMMs can of course also be
used to recognize (classify) movements. That has not been the focus of our work,
though.

2.5. Temporal coordination

When imitating dual-arm movements, often certain constraints have to be satis-
fied. Dual-arm movements can be uncoordinated or coordinated. No matter what
method is chosen for the reproduction, information about coordination between
the two arms can be very useful. There are various kinds of coordination; one way
to classify two-arm coordination is to distinguish between temporal and spatial
coordination. Spatial coordination means that the position and orientation of one
hand is at least partially determined by the position and orientation of the other
hand. In contrast, temporal coordination means that one arm must accomplish a
certain subgoal as moving the hand to a specific position before the other arm
may continue executing its movement. When imitating a two-arm movement, such
dependencies should be detected and reproduced properly. For example, if one pours
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Perception of Perception of
demonstration 1 . demonstration 1
¢ ¢ Perception
Raw data Raw data
demonstration 1 demonstration D

Key point extraction from

Y each demonstartion \
Key points of Key points of
demonstration 1 demonstration D
Processing/Training
Training HMM

Y
A

HMM (Ap, Ao, ;)

I L

Viterbi Algorithm

State sequence State sequence
corresponding to .. corresponding to
key points key points

CKP detection

Reproduction

A

»  Common key points

A

Reproduced movement
of the left arm

data of the right arm
v (preprocessed
analogously)

Reproduced dual-arm
movements

Fig. 3. Overview of the entire approach, from perception to reproduction: key points of the demon-
strations are detected in a preprocessing stage and used to train the HMMs. Each HMM is trained
with the key points of all demonstrations using the Baum-Welch algorithm for multiple obser-
vations. Each training sequence consists of the key points of the respective demonstration. For
a given observation sequence, the Viterbi algorithm returns the optimal state sequence of the
HMMs with respect to that observation sequence. For the reproduction of a perceived movement,
key points that are common to all (or almost all) demonstrations, so-called common key points,
are used. To determine the common key points across key point sequences, the Viterbi algorithm
is used to find sequences of HMM states that correspond best to these key point sequences.

water with the left hand from a bottle into a glass that he/she holds in the right
hand, he/she has to move the glass to its correct position before starting to pour. It
would be helpful if one could find out whether an observed temporal relation is just
a coincidence or whether it constitutes a necessary coordination. Multiple demon-
strations allow us to determine the likelihood of some temporal relation being a true
coordination.
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The HMMs approach in conjunction with the common key points introduced in
this section can be used to detect temporal relations between characteristic points of
the left hand path and the right hand path that are unlikely to be coincidental. Let
(T1,iy1+--+»TD,i, p) be the time stamps of the key points that form a common key
point C;. of the right arm’s movement, and (71,4, ,,...,7D,i, ,) be the time stamps
of some C) of the left arm. Then we can conclude that most likely there exists
temporal coordination between the points C, and Cj, if in all demonstrations C, is
reached before C; — or the other way round, i.e. if

Vk (Tk»ir.k < Thygg, V Thyipg = Tk»il,k)'

It could also be possible that the two arms must reach some points at the same time.
That is accounted for by the following additional criterion for temporal coordination
(¢ is fixed and should be chosen close to zero):

VE | Thiy o = Ty | < 6.

Once again, detecting those temporal relations requires only knowledge about com-
mon key points, which may be acquired without HMMs and may thus be imple-
mented independently of the rest of our approach.

3. Human Kinematics Model

The goal of the methods described in this paper is to eventually have robots imitate
human arm movements. To achieve this, we need to be able to perceive and analyze
demonstrations, transform them to a robot joint representation and reproduce them.
To begin with, we have so far only simulated the reproduction on a kinematic model
of the human upper body with 18 degrees of freedom (Fig. 4), where each arm is
modeled by nine DOFs: two in the inner shoulder joint (sternoclavicular), three in
the outer shoulder joint (glenohumeral), two at the elbow and two at the wrist. For
detailed information, see Ref. 14. In Refs. 15, this model has also been extended to
a full-body reference kinematics model.

To make imitation look natural, joint angles must be preserved as well as pos-
sible. However, measuring the joint angles of a human demonstration requires a
complex tracking system (for example, a marker-based system), which is not very
usable in everyday life. So, instead, we have incorporated two different methods for
the acquisition of the required data: a method based on a magnetic tracking system,
and a purely vision-based markerless human motion capture system.

Using an easy-to-set-up magnetic tracking system,* the position and orientation
of both hands can be tracked. The joint angles can then be reconstructed using
an approach based on neurophsychological studies. In Refs. 16 and 17, Soechting
and Flanders have shown that arm movements are planned in shoulder-centered
spherical coordinates and suggest a sensorimotor transformation model that maps

awww.polhemus.com
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Fig. 4. Kinematics model of both arms. Each arm is modeled by nine degrees of freedom: two in
the inner shoulder (61,62), three in the outer shoulder (03,64,05), two in the elbow (6¢,07), and
two in the wrist (6s,69).

the Cartesian wrist position to a natural arm posture using a set of representation
parameters, which are the upper arm elevation, the forearm elevation, the upper
arm yaw and the forearm yaw, respectively.

In neurophysiology, evidence exists that arm and hand postures are independent
of each other. This means that one can find the forearm and upper arm posture to
match the hand position and then determine the joint angles for the wrist to match
the hand orientation. In Ref. 18, we proposed a new algorithm which incorporates
the physiological observation into a closed-form solution to the inverse kinematics
problem to generate natural-looking arm postures. For the reconstruction of the arm
joint angles, we geometrically derived equations for the arm joint angles 03, ..., 09 in
a closed form. The remaining two shoulder joints, 6; and 65, supported by the arm
kinematics model can be set manually by the user. For more details, see Refs. 18
and 19. The algorithm we use can be summarized as follows:

e Compute the arm posture parameters for a given position of the hand using the
sensorimotor transformation model.

e Map the arm posture parameters to shoulder and elbow joint angles 03, 64, 05
and fg. Note that the position of the wrist is completely determined by these
angles.
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e Use the measured orientation of the hand to compute the remaining joint angles,
07, 0s and 69, based on a closed-form solution to the inverse kinematics problem.

e Check if any joint angles violate their limits. If yes, compute a new solution
using the next feasible elbow position. Note that the feasible elbow positions are
determined by the rotation of the center of the elbow joint about the axis, which
passes through the wrist and the shoulder joint.

Since our algorithm is based on the neurophysiology studies and explicit formulae
are given analytically, the algorithm is able not only to produce natural-looking
arm postures but also to accomplish this very efficiently.

4. Perceiving Human Movements

The approach described in Sec. 2 is based on the perceived hand path as well
as the seven reconstructed joint angles. Recently, we have also developed a purely
image-based markerless human motion capture system.?? The input of the system is
stereo color images of size 640x480 captured at 30 Hz, with two calibrated Dragonfly
cameras built into the head of the humanoid robot ARMAR-IIL.2! The input images
are preprocessed, generating output for the gradient cue and the so-called distance
cue, as described in Ref. 20. Based on the output of the image processing pipeline, a
particle filter is used for tracking the movements in configuration space. The overall
likelihood function for computing the a posteriori probabilities is formulated as

3 M,
1
p(z]s) x exp{ —= _?IZ: i(s,¢i) +—g M ng )

where s is the configuration to be evaluated, z is a general denotation for the current
observations, i.e. the current input image pair, and ¢; € R? with i € {1,2,3} denotes
the triangulated 3D position of the hands and the head. The function d;(s,c) is
defined as
di(s,c) == { |fi(s) —cl* : c#0,
(3 k) T

0 . otherwise,

where n := dim(s) is the number of DOF's of the human model. The transformation
fi © R® — R3? transforms the n-dimensional configuration of the human model
into the 3D position of the left hand, right hand or head respectively, using the
forward kinematics of the human model. g,,, with m € {1,2,..., M,}, denotes the
intensity values in the gradient image (which is derived from the input images z)
at the M, pixel coordinates of the projected contour of the human model for a
given configuration s. This process is performed for both input images using the
calibration parameters of each camera. For each image pair of the input sequence,
the output of the system is the estimation of the particle filter, given by the weighted
mean over all particles. A detailed description is given in Ref. 20.

In contrast to the acquisition method based on the magnetic tracking system,
the joint angle values 03, 04, 05 and 6g are calculated directly and therefore the
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Fig. 5. Illustration of the performance of the markerless human motion capture system. Left:
Projection of the estimated configuration into the left camera image. Right: 3D visualization of
the estimated configuration with an articulated human model.

position of the elbow does not have to be approximated based on empirical studies
but is determined explicitly.

5. Experiments

We used the kinematic model described in the previous section to conduct several
experiments. We tested the preprocessing, generalization and reproduction stages
of our approach with three different dual-arm movements:

e Pick-and-place task: We picked up a box with both arms, moved it to the right
and put it down again.

e Pouring motion: We poured water from a bottle held by the left hand into a glass
that was held by the right hand.

e Unscrewing motion: We unscrewed the lid of a jar (a complex motion that is dif-
ferent every time it is demonstrated; this did not work too well with our system).

The joint angles were obtained from the position of the hand using the algo-
rithm based on findings in Refs. 16 and 17, as described in the previous section.
Our kinematic model was clearly capable of computing natural-looking joint angles
that way. For our experiments, we used the model to simulate the imitation of
movements. We were able to display the simulated movement using a visualization
of the human upper body that we created with Openlnventor and combined with
our kinematics model. We implemented our own HMMs for this system and did not
make use of the existing HMM tool box.

Fach of the movements mentioned above was demonstrated between five and
ten times by the same person. Selected training samples, as well as the reproduced
(generalized) hand path for the pick-and-place task, are shown in Fig. 6. It can be
seen how the generalized trajectory is interpolated linearly between the common
key points that were found using all demonstrations.
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Fig. 6. Pick-and-place task: training samples and the generalized trajectory for w = 0. The gen-
eralized trajectory is interpolated linearly between the common key points that were found using
all demonstrations.
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Fig. 7. Generalized trajectory of the left hand for different values of the weighting factor w, which
determine the relative influence of the hand path trajectory and joint angle trajectories on the
reproduced movement.

Figure 7 shows only the reproduced trajectory of the left hand, but for three
different w’s. As expected, if the reproduction is based on joint angles and not only
on the observed hand path (w =1 or w = 0.5), the hand path becomes somewhat
erratic. On the other hand, the reproduced movement seems more realistic and less
artificial in that case, which can be explained by the fact that more key points are
created for joint angle trajectories than for the hand path (a joint angle key point is
generated each time any joint changes its direction). If we use spline interpolation
between key points instead of linear interpolation, we would probably obtain more-
realistic-looking trajectories for w = 0 as well.
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In Fig. 8, the original joint angle trajectory of joint 87 (left arm; see also Fig. 4)
of one randomly selected demonstration (solid line), and the generalized trajectory
of that joint for w = 0 (dotted line) and w = 1 (dashed line), are shown. For
w = 0, the spike at about ¢ = 20s is ignored because obviously no key point is
detected in the hand path at that point in time. The key points detected in one of
the demonstrations are shown in Fig. 9, which seems to be what one would expect
(characteristic features, i.e. significant changes of direction, have been detected).

Figure 10 shows the key points detected in a training sample of the pouring
motion. One of the key points is not a common key point, though, and will thus
not be considered for the imitation of the movement. Table 1 shows the temporal
relations that were identified between the common key points of both arms. The
numbers in the precondition column specify for each arm which common key point

07 (rad)
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N
[\oXé,

|
N
o
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Fig. 8. Joint angle trajectory for joint 07 of the left arm. One randomly selected demonstration
(solid line) and the generalized trajectory of the same joint for w = 0 (dotted line) and w = 1
(dashed line).
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Fig. 9. Key points detected in one demonstration of the pick-and-place task. Characteristic features,
i.e. significant changes of direction, have been detected as key points.
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Fig. 10. Key points detected in one demonstration of the pouring task.

Table 1. Temporal relations between common key
points of the arms in the case of the pouring task.

CKP Precondition CKP Precondition
(right) (left) (left) (right)
1 1 1
2 1 2
3 3 2
4 3 4
5 6 5
6
7

the other arm’s hand must reach before the motion can be continued. Before the
left hand is allowed to proceed to the third common key point, the right hand has
to reach its second common key point, which is what one would expect. Of course,
a few other relations that might not be critical for the correct execution of the task
were detected as well.

6. Discussion, Conclusions and Future Work

We presented an HMM-based approach to imitation learning of arm movements
in humanoid robots. HMMs are used to generalize movements demonstrated to a
robot multiple times. Characteristic features of the perceived movement, so-called
key points, are detected in a preprocessing stage and used to train the HMMs.
By doing so, we avoid having a high number of states and facilitate the matching
of (or between) multiple demonstrations. We use continuous HMMs and model the
observations in each state with multivariate Gaussian density functions. Each HMM
is trained with the key points of all demonstrations using the Baum—Welch algo-
rithm for multiple observations. Each training sequence consists of the key points
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of the respective demonstration. For a given observation sequence, the Viterbi
algorithm returns the optimal state sequence of the HMMs with respect to that
observation sequence, i.e. the sequence of states most likely to generate that obser-
vation sequence. For the reproduction of a perceived movement, key points that
are common to all (or almost all) demonstrations, so-called common key points,
are used. To determine the common key points across key point sequences, we use
the Viterbi algorithm to find sequences of HMM states that correspond best to
these key point sequences. The common key points are determined by comparing
these state sequences and selecting only those states that appear in every sequence.
Common key points are used for the reproduction of movements on the kinematics
model presented in Sec. 3 and its extension in Ref. 15.

The results we obtained using a software model specifically created for this
purpose show that our approach is an encouraging step in the effort to teach a
robot new tasks in a flexible and natural way.

We would like to mention once again the work of Calinon and Billard in Refs. 5
and 10 because of the similarity to parts of our work. However, while our work
was clearly inspired by their method, only the basic ideas are based on it. We
have introduced new aspects, such as the detection of common key points and the
identification of temporal coordination between two arms, and we use a different
preprocessing method. The kinematic models presented in Sec. 3 are also part of
the contribution of this paper.

So far, we have only simulated generating generalized trajectories, using a kine-
matic model of the human arms. A natural next step would be the reproduction of
movements on the humanoid robot ARMAR-III.?! That would involve mapping the
joints of our kinematic model to those of the robot and will be part of future work.
Another aspect of our method that should be improved is how the trajectories are
encoded in the HMM. As described in Sec. 2, a generic HMM architecture does not
seem to be ideal for our approach.

Also, our system is not invariant to translations or rotations yet — a highly desir-
able property for any imitation learning system to be used in practice. Furthermore,
it seems essential for the accurate imitation of tasks to take into account objects
that are manipulated during the demonstration. Not only do we need to make sure
that an imitated movement results in the same manipulation of an object as the
demonstrated movement, but considering objects would also be a significant step
toward recognizing the goal of a task, which we have not attempted to do yet but
which is clearly an important aspect of imitation learning.
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